Modélisation géomécanique des paléocontraintes pour l'exploration de l'or orogénique en Abitibi

Stéphane Faure, Silvain Rafini et Sylvain Trépanier

Utilisation des outils et méthodes du Consorem Québec Exploration, Château Frontenac, 22 Novembre 2010

Plan

Introduction: gisements d'or de type orogénique

Principes, méthodes, hypothèses, paramètres

Résultats de modélisations géomécaniques en Abitibi Section au sommet de la mine Sigma Camp minier de Val-d'Or - Malartic Faille Porcupine - Destor A l'échelle de l'Abitibi

Conclusion

Gisements d'or orogénique

Il est connu que les minéralisations aurifères empruntent et se concentrent autour et le long de couloirs de déformation qui servent de conduits pour les fluides hydrothermaux

Failles Sigeom et Daigneault 1996

Consortium de recherche en exploration minérale

onsorem

Gisements d'or orogénique

Ces couloirs sont connus en Abitibi, mais où chercher le long de ceux-ci?

Failles Sigeom et Daigneault 1996

Consortium de recherche en exploration minérale

NSOREM

em Contexte de mise en place des gisements orogéniques Mine Casa Berardi, NO Abitibi 7-12 km = TRANSITION DUCTILE-Shear Strength Sismique Gis€ mésot orog Transition Photo Damien Gaboury **Golden Mile** Pamour Sigma Hypozonal Addison ollingeı Asismique u-As

Profondeur obtenues par inclusions fluides (Brown et Hagemann, WEB)

Consortium de recherche en exploration minérale

Groves et al., 2000

20

Consortium de recherche en exploration minérale

CONSOREM

Modélisation des pressions avec UDEC*

*Universal Distinct Element Code

Principes

État d'équilibre interséismique **σ1**

 $\mathbf{O3}$

vso

Les fluides migrent des zones de fortes pressions vers les zones de faibles pressions récurrentes sur une longue période de temps (assez pour former un gisement)

La localisation des altérations et des minéralisations devrait valider cette hypothèse

Fortes

Pressions

Faibles

Objectifs de la modélisation

Utiliser une méthode numérique de reconstitution des paléopressions tectoniques (modeleur géomécanique UDEC*) afin de:

- 1- Déterminer la « perméabilité structurale » le long des couloirs de déformation de l'Abitibi (zones dépressurisées)
- 2- Générer de nouvelles cibles d'exploration le long de ces couloirs majoritairement recouverts par le Quaternaire
- 3- Mieux déterminer et comprendre les facteurs structuraux et rhéologiques qui contrôlent la mise en place de l'or orogénique dans les ceintures RV

* Universal Distinct Element Code

Réseau de failles modélisées

Postulat : la géométrie des failles modélisées s'apparente à celle qui prévalait lors de l'épisode de minéralisation vers la fin de l'orogénie

Failles Sigeom et Daigneault 1996

onsorem

CONSOREM

Travaux du CONSOREM

1-Paléopressions en section au sommet de la Mine Sigma

ONSOREM

Travaux du CONSOREM

4- Modélisation à l'échelle de l'Abitibi

CONSOREM

Mines Sigma - Lamaque

Section

ONSOREM

Sigma – Lamaque

Production 273 t Au depuis 1927

Gisement type veines Qz-Cb-TL-Au

Veines pas à peu déformées Postérieures à schistosité

Age: 2680 Ma

Veines de cisaillement verticales Veines d'extension sub-horizontales Recoupement mutuel = synchrone

Pressions contrôlées par structures conjuguées

CONSOREM Correspondance entre pressions et teneurs en or

CONSOREM Correspondance entre pressions et teneurs en or

Test statistique de corrélation - Pressions vs Au

Camp minier de Val-d'Or - Malartic

CONSOREM

Camp Val-d'Or Malartic

Job Title : Valdor 2002 Mohr-Coulomb. Compression N340 From File : vd2002e2c1.txt

Déformation amplifiée 6X

(e+6)

Cycle 750 Time 3.968E+01 sec magnified block deformation magnification = 6.000E+00

Camp Val-d'Or et Malartic

CONSOREM

10 205

Camp minier de Val-d'Or

Pressions et gisements d'or orogénique, Val-d'Or

Pressions (MPa) -400 -300 -200 -100

NSOR

Gisements localisés près de failles et contacts, en bordure de zones de fortes pressions et forts gradients + gros gisements dans zones de faibles pressions

Camp Val-d'Or Malartic

Pressions tectoniques et le champ de veines de QZ-CB-TL Les veines suivent les courbes isobariques

Données de Pitre 2000 et SIGEOM 2004

INSOR

eM

Comparaison Val-d'or et Timmins (Ont.)

Zone de faibles pressions Val-d'Or

onsorem

Altération hydrothermale **Timmins**

Modélisation des paléopressions le long de la faille transcrustale de **Porcupine - Destor**

INSOR

em

CONSOREM

Éléments géologiques importants

Géologie du SIGEOM et Cambior 2003

¹David et al. 2006

²Mueller et al. 1996; David et al. 2007

³Mueller et al. 1996; Davis 2003 inédit

Éléments géologiques importants

Géologie du SIGEOM et Cambior 2003

150

Minéralisations orogéniques synchrones aux bassins sédimentaires de Duparquet (pull-apart), à des syénites et porphyres, et à système tectonique en transpression dextre

Trois modèles à 2 blocs et 1 faille But: comprendre l'effet de courbure sur la distribution des pressions

INSOREM

ONSOREM

CONSOREM

consortaum de recherche en exploradori minérale

CONSOREM

Implication pour l'exploration

Plus la courbure d'un segment de faille est fort plus on doit s'éloigner du point d'inflexion

337Iodélisation UDEC

Modélisation des pressions

Gros gisements au centre de vastes zones de basses pressions

Dépôts plus modestes en bordure de zones de faibles pressions et de forts gradients de pression

Comparaison - schistosités

Trajectoire de la schistosité MESURÉE

em

JSO

Comparaison entre les schistosités MESURÉE et MODÉLISÉE avec UDEC

Conclusion: le modèle numérique explique certains mécanismes de la déformation régionale

Pressions et minéralisations

ONSOREM

Pressions et H₂O normatif

*NORMAT (Piché et Jébrak 2004), données de Cambior 2003

NSO

em

Pressions et CO₂ normatif

*NORMAT (Piché et Jébrak 2004), données de Cambior 2003

onsorem

Interprétation

CONSOREM

Pressions et altération régionale

Zone d'altération? de Beattie – Donchester (minéralisation type disséminée)

Syénite de Beattle

ONSOREM

44 ***CO2** normatif calculé par réseaux neuronaux

Pressions et altération régionale Altérations à Timmins, (minéralisation type veine)

INSOREM

Pressions et altération régionale

46 ***CO2** normatif calculé par réseaux neuronaux

JSOREM

DNSORem

Failles modélisées

Deux modélisations différentes avec le même réseau de failles Compression à N345 et compression à N330

ONSOR

eM

Résultats des paléopressions moyennes pour le modèle avec une contrainte orientée N345

onsorem

Résultats des paléopressions moyennes pour le modèle avec une contrainte orientée N330

ONSOREM

Les différences entre les deux modèles

Les régions en rouge-violet indiquent les plus grands écarts de pression

INSOREM

Le modèle N345 est globalement jugé meilleur que le N330 pour certains intervalles de pressions, mais localement le modèle N345 explique mieux la présence de certaines minéralisations

*log n (cote d'un indicateur près de la minéralisation /cote d'un indicateur loin de la minéralisation) Cote étant = probabilite / (1-probabilite)

Autres paramètres géomécaniques

Quantité de déplacement tangentiel (décrochement) le long des failles

NSOREM

Cibles d'exploration régionales par réseaux neuronaux (RN)

CONSOREM

Résultats des paléopressions moyennes pour le modèle avec une contrainte orientée N345

Comment valoriser les données de paléopressions à cette échelle?

JSOREM

Distribution de l'or en Abitibi

Distribution de l'or (toutes catégories) perpendiculaire aux failles dans la Zone Volcanique Sud

Base de données de Gosselin et Dubé 2005

Base de données - Réseaux Neuronaux (RN)

NSOREM

CONSOREM ANALYSE STATISTIQUE DES CORRÉLATIONS Variable simulée (σ_{moy}) / variable mesurée (indices Au)

CONSOREM ANALYSE STATISTIQUE DES CORRÉLATIONS Variable simulée (σ_{moy}) / variable mesurée (indices Au)

19724 gîtes et indices Au

CONSOREM

ANALYSE STATISTIQUE DES CORRÉLATIONS Variable simulée (σ_{mov}) / variable mesurée (indices Au)

Paramètres géomécaniques UDEC

Smoy_330	Smax1_330	Smin3_330	Smoy_Pente330	S1_moins_S3_	Direct_Sigma1_	Coef_Rupture_33(S	S	S	S	Smoy330_moins_34
164 311 936	565 309 504	163 314 336	281,162	201 995 184	68,909	0,294067	4	0	8	2	17 401 792
149 694 400	542 021 312	157 367 456	284,296	184 653 888	58,2135	0,293283	8	0	2	4	19 399 872
135 235 360	520 640 320	49 830 368	346,333	170 809 936	60,5716	0,293687	6	4	0	4	44 679 904
140 735 904	526 856 736	154 615 072	50,2241	172 241 648	62,7978	0,291789	4	4	2	8	90 866 240

Les minéralisations aurifères volcanogènes ne sont pas considérées (LaRonde, Horne)

Minéralisations

Nb_Au_sup1gt	Nb_gites_Au	Nb_Cu_sup1pc	Nb_gites_MB	Tonne_Au	Volcanogène	Dist_Faille
0	0	0	0			0
U	U	0	U	0	0	U
1	0	0	0	0	0	0
1	0	0	0	0	0	0
0	0	0	0	0	0	0

Couches utilisées pour les RN

Modèle UDEC avec une contrainte régionale N330 1-Pressions maximales (S1) 2-Pressions minimales (S3) 3-Différentiel de pression (S1-S3) 4-Pressions moyennes ((S1+S3)/2) 5-Pente des pressions moyennes (Dérivée horizontale) 6-Direction des contraintes maximales (Sigma1) 7-Déplacement tangentiel (décrochement) 8-Déplacement normal (chevauchement) 9-Coefficient de rupture

Modèle UDEC avec une contrainte régionale N345° 10-Pressions maximales (S1) 11-Pressions minimales (S3) 12-Différentiel de pression (S1-S3) 13-Pressions moyennes ((S1+S3)/2) 14-Pente des pressions moyennes (Dérivée horizontale)

Autres paramètres

ONSOR

15-Différence des pressions moyennes entre les deux modèles 16-Orientation de la faille

17-Distance de la faille

Carte de potentiel minéral des RN

Potentiel de retrouver des minéralisations aurifères le long des corridors de déformation de l'Abitibi selon les paramètres géomécaniques et critères de minéralisations choisis

onsorem

Carte de potentiel minéral des RN

Régions de Malartic et Val-d'Or

ONSOREM

Carte de potentiel minéral des RN

Région de Rouyn

ONSOREM

Conclusion

Modélisation numérique permet de mieux documenter : L'empreinte des systèmes hydrothermaux fossiles La perméabilité relative dans la croûte moyenne La dynamique des systèmes faillés complexes

Minéralisations et altérations sont localisées:

En bordure de zones de fortes pressions et forts gradients Gros gisements au cœur de zones de faibles pressions

Présence d'or le long des failles influencée par différents facteurs structuraux et rhéologiques :

Pressions (moyennes, maximales, ou minimales), quantité de déplacement tangentiel, coefficient de rupture, orientation faille

Applications

Nouvelles cibles d'exploration dans une région ressource Couche d'information géologique supplémentaire pour les SIG

Remerciements

Réal Daigneault (UQAC)

Marie-France Bugnon et Yushi Lei (Cambior)

Rapports et présentations sur : www.consorem.ca